Treating the Hooking Effect in Satellite Altimetry Data: A Case Study along the Mekong River and Its Tributaries

نویسندگان

  • Eva Boergens
  • Denise Dettmering
  • Christian Schwatke
  • Florian Seitz
چکیده

This study investigates the potential of satellite altimetry for water level time series estimation of smaller inland waters where only very few measurements above the water surface are available. A new method was developed using off-nadir measurements to estimate the parabola generated by the hooking effect. For this purpose, a new waveform retracker was used as well as an adopted version of the RANdom SAmple Consensus (RANSAC) algorithm. The method is applied to compute time series of the water levels height of the Mekong River and some of its tributaries from Envisat high-frequency data. Reliable time series can be obtained from river crossings with widths of less than 500 m and without direct nadir measurements over the water. The expected annual variations are clearly depicted and the time series well agree with available in situ gauging data. The mean RMS value is 1.22 m between the resulting time series and in situ data, the best result is 0.34 m, the worst 2.26 m, and 80% of the time series have an RMS below 1.5 m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Geostrophic and Ekman Surface Current Using Satellite Altimetry Observations and Surface Wind in Persian Gulf and Oman Sea

The rise of satellite altimetry is a revolution in the ocean sciences. Due to its global coverage and its high resolution, altimetry classically outperforms in situ water level measurement. Ekman and geostrophic currents are large parts of the ocean’s current, playing a vital role in global climate variations. According to the classic oceanography, Ekman and geostrophic currents can be calculat...

متن کامل

Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

Water level (WL) and water volume (WV) of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which ...

متن کامل

Gravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines

Gravity acceleration data have grand pursuit for marine applications. Due to environmental effects, marine gravity observations always hold a high noise level. In this paper, we propose an approach to produce marine gravity data using satellite altimetry, high-resolution geopotential models and harmonic splines. On the one hand, harmonic spline functions have great capability for local gravity ...

متن کامل

Tidal prediction using time series analysis of Buoy observations

Although tidal observations which are extracted from coastal tide gages, have higher accuracy due to their higher sampling rate, installing these types of gages can impose some spatial limitation since we cannot use every part of sea to install them. To solve this limitation, we can employ satellite altimetry observations. However, satellite altimetry observations have lower sampling rate. Acco...

متن کامل

River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling

A methodology to estimate the discharge along rivers, even poorly gauged ones, taking advantage of water level measurements derived from satellite altimetry is proposed. The procedure is based on the application of the Rating Curve Model (RCM), a simple method allowing for the estimation of the flow conditions in a river section using only water levels recorded at that site and the discharges o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016